Reduced order modeling and numerical linear algebra

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

February 7, 2020
ICERM
A. Narayan
(U. Utah - SCI)

Continuous \leftrightarrow discrete analogies

Most standard techniques for reduced basis methods can be understood from numerical linear algebra.

Kolmogorov n widths \leftrightarrow Singular value decompositions

Reduced basis methods $\leftrightarrow Q R$ decompositions

Empirical interpolation methods $\leftrightarrow L U$ decompositions

Kolmogorov n widths are (essentially) singular values

[^0]NLA and ROM

Singular value decompositions

Let $\boldsymbol{A} \in \mathbb{R}^{M \times N}$, with $M \gg N$.
We will think of the columns of \boldsymbol{A} as snapshots.

$$
\boldsymbol{A}:=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \cdots & \boldsymbol{a}_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

The SVD of \boldsymbol{A} is

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

where \boldsymbol{U} and \boldsymbol{V} are orthogonal $M \times M$ and $N \times N$ matrices, respectively. $\boldsymbol{\Sigma}$ is a diagonal matrix with non-negative entries.

We'll use the following non-standard notation for the entries in $\boldsymbol{\Sigma}$:

$$
\sigma_{0} \geqslant \sigma_{1} \geqslant \cdots \geqslant \sigma_{N-1}
$$

Low-rank approximations

Among the nice properties of the SVD is its ability to form low-rank approximations,

$$
\boldsymbol{A}_{k}:=\boldsymbol{U}_{k} \boldsymbol{\Sigma}_{k} \boldsymbol{V}_{k}^{T}, \quad 1 \leqslant k \leqslant N
$$

where \boldsymbol{U}_{k} and \boldsymbol{V}_{k} are k-column truncations, and $\boldsymbol{\Sigma}_{k}$ is a $k \times k$ principcal submatrix truncation.

With $\operatorname{rank}\left(\boldsymbol{A}_{k}\right)=k$, then

$$
\boldsymbol{A}_{k}=\underset{\operatorname{rank}(\boldsymbol{B}) \leqslant k}{\arg \min }\|\boldsymbol{A}-\boldsymbol{B}\|_{*},
$$

for $*=2, F$.

Low-rank approximations

Among the nice properties of the SVD is its ability to form low-rank approximations,

$$
\boldsymbol{A}_{k}:=\boldsymbol{U}_{k} \boldsymbol{\Sigma}_{k} \boldsymbol{V}_{k}^{T}, \quad 1 \leqslant k \leqslant N
$$

where \boldsymbol{U}_{k} and \boldsymbol{V}_{k} are k-column truncations, and $\boldsymbol{\Sigma}_{k}$ is a $k \times k$ principcal submatrix truncation.

With $\operatorname{rank}\left(\boldsymbol{A}_{k}\right)=k$, then

$$
\boldsymbol{A}_{k}=\underset{\operatorname{rank}(\boldsymbol{B}) \leqslant k}{\arg \min }\|\boldsymbol{A}-\boldsymbol{B}\|_{*}
$$

for $*=2, F$.
Equivalently, \boldsymbol{A}_{k} is the projection of the columns of \boldsymbol{A} onto $R\left(\boldsymbol{U}_{k}\right)$:

$$
\boldsymbol{A}_{k}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
P_{R\left(\boldsymbol{U}_{k}\right)} \boldsymbol{a}_{1} & P_{R\left(\boldsymbol{U}_{k}\right)} \boldsymbol{a}_{2} & \cdots & P_{R\left(\boldsymbol{U}_{k}\right)} \boldsymbol{a}_{N} \\
\mid & | | & & \mid
\end{array}\right)
$$

Projections onto arbitrary spaces

What if we project \boldsymbol{A} onto other spaces?
If $V \subset \mathbb{R}^{M}$ is any subspace, we could consider

$$
\boldsymbol{P}_{V} \boldsymbol{A}:=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{P}_{V} \boldsymbol{a}_{1} & \boldsymbol{P}_{V} \boldsymbol{a}_{2} & \cdots & \boldsymbol{P}_{V} \boldsymbol{a}_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Projections onto arbitrary spaces

What if we project \boldsymbol{A} onto other spaces?
If $V \subset \mathbb{R}^{M}$ is any subspace, we could consider

$$
\boldsymbol{P}_{V} \boldsymbol{A}:=\left(\begin{array}{cccc}
\mid & \left.\right|_{V} ^{\mid} & & \mid \\
\boldsymbol{P}_{V} \boldsymbol{a}_{1} & \boldsymbol{P}_{V} \boldsymbol{a}_{2} & \cdots & \boldsymbol{P}_{V} \boldsymbol{a}_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

And we could ask about a certain type of error committed by this approximation

$$
E(V):=\max _{\|x\|_{2}=1}\left\|\boldsymbol{A} x-\boldsymbol{P}_{V} \boldsymbol{A} x\right\|_{2}
$$

We know $V=R\left(\boldsymbol{U}_{k}\right)$ does a pretty good job. What about other spaces?

Optimal projections

For a given rank k, an "optimal" projection commits the smallest error:

$$
E_{k}:=\min _{V \subset \mathbb{R}^{M}} E(V)
$$

Optimal projections

For a given rank k, an "optimal" projection commits the smallest error:

$$
E_{k}:=\min _{V \subset \mathbb{R}^{M}} E(V)
$$

So an extremal characterization of an SVD-based low rank approximation is

$$
R\left(\boldsymbol{U}_{k}\right)=\underset{V \subset \mathbb{R}^{N}}{\arg \min } \max _{\|x\|_{2}=1}\|\boldsymbol{A} x-\boldsymbol{P} \boldsymbol{A} x\|_{2}
$$

Optimal projections

For a given rank k, an "optimal" projection commits the smallest error:

$$
E_{k}:=\min _{V \subset \mathbb{R}^{M}} E(V)
$$

So an extremal characterization of an SVD-based low rank approximation is

$$
R\left(\boldsymbol{U}_{k}\right)=\underset{V \subset \mathbb{R}^{N}}{\arg \min } \max _{\|x\|_{2}=1}\|\boldsymbol{A} x-\boldsymbol{P} \boldsymbol{A} x\|_{2}
$$

Or, an (unnecessarily?) pedantic alternative:

$$
E_{k}=\sigma_{k}(\boldsymbol{A})=\min _{V \subset \mathbb{R}^{N}} \max _{\|x\|_{2}=1} \min _{v \in V}\|A x-v\|_{2}
$$

SVD projections

Given $\boldsymbol{A} \in \mathbb{R}^{M \times N}$, the success of a low-rank projection is dictated by the approximation numbers

$$
\sigma_{k}(\boldsymbol{A})=\min _{V \subset \mathbb{R}^{N}} \max _{\|x\|_{2}=1} \min _{v \in V}\|A x-v\|_{2}
$$

More precisely, it is dictated by fast decay of these numbers as k increases.

SVD projections

Given $\boldsymbol{A} \in \mathbb{R}^{M \times N}$, the success of a low-rank projection is dictated by the approximation numbers

$$
\sigma_{k}(\boldsymbol{A})=\min _{V \subset \mathbb{R}^{N}} \max _{\|x\|_{2}=1} \min _{v \in V}\|A x-v\|_{2}
$$

More precisely, it is dictated by fast decay of these numbers as k increases.
These numbers are defined by our choice of metric on "output" space \mathbb{R}^{M}, and our choice of metric on "measurement" space \mathbb{R}^{N}.
I.e., a generalization might look like

$$
\sigma_{k}\left(\boldsymbol{A} ; \ell^{p}\left(\mathbb{R}^{M}\right), \ell^{q}\left(\mathbb{R}^{N}\right)\right)=\min _{\operatorname{dim} V \leqslant k} \max _{\|x\|_{q}=1} \min _{v \in V}\|A x-v\|_{p}
$$

Kolmogorov n widths

$$
\sigma_{n}\left(\boldsymbol{A} ; \ell^{p}\left(\mathbb{R}^{M}\right), \ell^{q}\left(\mathbb{R}^{N}\right)\right)=\min _{\operatorname{dim} V \leqslant n} \max _{\|\boldsymbol{x}\|_{q}=1} \min _{\boldsymbol{v} \in V}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{v}\|_{p}
$$

These numbers tell us how well the columns of \boldsymbol{A} are ℓ^{p}-approximated by a linear space using ℓ^{q} measurements.

Another definition might be the maximum column norm error:

$$
\sigma_{n}\left(\boldsymbol{A} ; \ell^{p}\left(\mathbb{R}^{M}\right)\right)=\min _{\operatorname{dim} V \leqslant n} \max _{i \in[N]} \min _{v \in V}\left\|\boldsymbol{A} \boldsymbol{e}_{i}-\boldsymbol{v}\right\|_{p}
$$

Great. How do we do all this with functions?

Kolmogorov n widths

$$
\sigma_{n}\left(\boldsymbol{A} ; \ell^{p}\left(\mathbb{R}^{M}\right), \ell^{q}\left(\mathbb{R}^{N}\right)\right)=\min _{\operatorname{dim} V \leqslant n} \max _{\|\boldsymbol{x}\|_{q}=1} \min _{\boldsymbol{v} \in V}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{v}\|_{p}
$$

These numbers tell us how well the columns of \boldsymbol{A} are ℓ^{p}-approximated by a linear space using ℓ^{q} measurements.

Another definition might be the maximum column norm error:

$$
\sigma_{n}\left(\boldsymbol{A} ; \ell^{p}\left(\mathbb{R}^{M}\right)\right)=\min _{\operatorname{dim} V \leqslant n} \max _{i \in[N]} \min _{v \in V}\left\|\boldsymbol{A} \boldsymbol{e}_{i}-\boldsymbol{v}\right\|_{p}
$$

Great. How do we do all this with functions?

Let \mathcal{A} be a collection of functions in a Hilbert space \mathcal{H}.
Then one way to talk about similar concepts to $\left(\ell^{2}\right)$ singular values is

$$
\sigma_{n}(\mathcal{A} ; \mathcal{H})=\inf _{\operatorname{dim} V \leqslant n} \sup _{a \in \mathcal{A}} \inf _{v \in V}\|a-v\|
$$

This is called the Kolmogorov n width of \mathcal{A} (with respect to \mathcal{H}).

Reduced basis methods (essentially) perform $Q R$ decompositions

Interpolative decompositions

One disadvantage of SVD-based low rank approximations,

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \cdots & \boldsymbol{a}_{N} \\
\mid & \mid & & \mid
\end{array}\right)=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T},
$$

is that we need information from all columns of \boldsymbol{A} to define \boldsymbol{U}.

Interpolative decompositions

One disadvantage of SVD-based low rank approximations,

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \cdots & \boldsymbol{a}_{N} \\
\mid & \mid & & \mid
\end{array}\right)=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T},
$$

is that we need information from all columns of \boldsymbol{A} to define \boldsymbol{U}.
One alternative: Interpolative decompositions, or matrix skeletonizations.
Basic idea: project all columns of \boldsymbol{A} onto a subspace spanned by a few columns.
A rank-n column skeletonization of \boldsymbol{A} is

$$
\boldsymbol{B}=\underbrace{\boldsymbol{A}_{S}\left(\boldsymbol{A}_{S}^{T} \boldsymbol{A}_{S}\right)^{\dagger} \boldsymbol{A}_{S}^{T} \boldsymbol{A},}_{\boldsymbol{P}_{R\left(\boldsymbol{A}_{S}\right)}} \quad \boldsymbol{A}_{S}:=\boldsymbol{A}\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{e}_{s_{1}} & \boldsymbol{e}_{s_{2}} & \cdots & \boldsymbol{e}_{s_{n}} \\
\mid & \mid & & \mid
\end{array}\right),
$$

with $S=\left\{s_{1}, \ldots s_{n}\right\} \subset[N]$.

Choosing the columns S

The problem of choosing S that is optimal in some metric is the column subset selection problem.

For metrics of interest, it's NP-hard.

Choosing the columns S

The problem of choosing S that is optimal in some metric is the column subset selection problem.

For metrics of interest, it's NP-hard.
So let's do something else: Let's pick columns greedily:
Given $S \subset[N]$ of size n, we'll add a column index via the procedure

$$
s_{n+1}=\underset{j \in[N]}{\arg \max }\left\|\boldsymbol{a}_{j}-\boldsymbol{P}_{R\left(\boldsymbol{A}_{S}\right)} \boldsymbol{a}_{j}\right\|_{2}
$$

This is much cheaper since I need only to evaluate N vector norms at each step.

Choosing the columns S

The problem of choosing S that is optimal in some metric is the column subset selection problem.

For metrics of interest, it's NP-hard.
So let's do something else: Let's pick columns greedily:
Given $S \subset[N]$ of size n, we'll add a column index via the procedure

$$
s_{n+1}=\underset{j \in[N]}{\arg \max }\left\|\boldsymbol{a}_{j}-\boldsymbol{P}_{R\left(\boldsymbol{A}_{S}\right)} \boldsymbol{a}_{j}\right\|_{2}
$$

This is much cheaper since I need only to evaluate N vector norms at each step.

There's already a well-polished algorithm that does this: the $Q R$ decomposition.

The $Q R$ decomposition (1/2)

The column-pivoted $Q R$ decomposition iteratively computes orthonormal vectors in the range of \boldsymbol{A}.

At step j, the next column is identified as the one whose projected residual is largest.

$$
\begin{aligned}
\boldsymbol{P}_{j-1} & :=\boldsymbol{Q}_{j-1} \boldsymbol{Q}_{j-1}^{T} \\
s_{j} & =\underset{j \in[N]}{\arg \max }\left\|\boldsymbol{a}_{j}-\boldsymbol{P}_{j-1} \boldsymbol{a}_{j}\right\|_{2} \\
\boldsymbol{q}_{j} & :=\frac{\boldsymbol{a}_{s_{j}}}{\left\|\boldsymbol{a}_{s_{j}}\right\|_{2}}, \quad \boldsymbol{Q}_{j}=\left[\begin{array}{ll}
\boldsymbol{Q}_{j-1}, & \boldsymbol{q}_{j}
\end{array}\right]
\end{aligned}
$$

The $Q R$ decomposition (1/2)

The column-pivoted $Q R$ decomposition iteratively computes orthonormal vectors in the range of \boldsymbol{A}.

At step j, the next column is identified as the one whose projected residual is largest.

$$
\begin{aligned}
\boldsymbol{P}_{j-1} & :=\boldsymbol{Q}_{j-1} \boldsymbol{Q}_{j-1}^{T} \\
s_{j} & =\underset{j \in[N]}{\arg \max }\left\|\boldsymbol{a}_{j}-\boldsymbol{P}_{j-1} \boldsymbol{a}_{j}\right\|_{2} \\
\boldsymbol{q}_{j} & :=\frac{\boldsymbol{a}_{s_{j}}}{\left\|\boldsymbol{a}_{s_{j}}\right\|_{2}}, \quad \boldsymbol{Q}_{j}=\left[\begin{array}{ll}
\boldsymbol{Q}_{j-1} & \boldsymbol{q}_{j}
\end{array}\right]
\end{aligned}
$$

The residual

$$
r_{j-1}:=\left\|\boldsymbol{a}_{s_{j}}-\boldsymbol{P}_{j-1} \boldsymbol{a}_{s_{j}}\right\|_{2}
$$

is the largest (ℓ^{2}-norm) column mistake we make by choosing $S=\left\{s_{1}, \ldots, s_{j-1}\right\}$, i.e., by replacing

$$
\boldsymbol{A} \leftarrow \boldsymbol{P}_{V} \boldsymbol{A}, \quad V:=\operatorname{span}\left\{\boldsymbol{a}_{s_{1}}, \ldots, \boldsymbol{a}_{s_{j-1}}\right\}
$$

The $Q R$ decomposition (2/2)

This algorithm is a greedy algorithm: instead of all-at-once optimization, we optimize one at a time.

Clearly, we don't expect this to perform as well as the optimal SVD-based subspace.
But how well does this greedy procedure work in practice?

Discrete greedy algorithms

In some cases, this greedy algorithm performs comparably to an optimal (SVD) algorithm.

In particular,

$$
\sigma_{r}(\boldsymbol{A}) \lesssim \exp (-b r) \quad \Longrightarrow \quad s_{j} \lesssim \exp (-c r)
$$

where $c<b$.[Harbrecht, Peters, Schneider 2010]

Back to the continuous world

Once more, let's put this into appropriate language for functions.
Let \mathcal{A} be a collection of functions, parameterized by $\mu \in \mathbb{R}^{d}$,

$$
\mathcal{A}=\left\{u(\mu) \mid \mu \in \Gamma \subset \mathbb{R}^{d}\right\} .
$$

Back to the continuous world

Once more, let's put this into appropriate language for functions.
Let \mathcal{A} be a collection of functions, parameterized by $\mu \in \mathbb{R}^{d}$,

$$
\mathcal{A}=\left\{u(\mu) \mid \mu \in \Gamma \subset \mathbb{R}^{d}\right\} .
$$

A greedy (pivoted $Q R!$) approach to determining a low-rank space for approximation is

$$
\mu_{j}=\underset{\mu \in \Gamma}{\arg \max }\left\|u(\mu)-\mathcal{P}_{j-1} u(\mu)\right\|,
$$

where \mathcal{P}_{j-1} is the projection operator onto $\operatorname{span}\left\{u\left(\mu_{1}\right), \ldots, u\left(\mu_{j-1}\right)\right\}$.

Back to the continuous world

Once more, let's put this into appropriate language for functions.
Let \mathcal{A} be a collection of functions, parameterized by $\mu \in \mathbb{R}^{d}$,

$$
\mathcal{A}=\left\{u(\mu) \mid \mu \in \Gamma \subset \mathbb{R}^{d}\right\} .
$$

A greedy (pivoted $Q R!$) approach to determining a low-rank space for approximation is

$$
\mu_{j}=\underset{\mu \in \Gamma}{\arg \max }\left\|u(\mu)-\mathcal{P}_{j-1} u(\mu)\right\|,
$$

where \mathcal{P}_{j-1} is the projection operator onto $\operatorname{span}\left\{u\left(\mu_{1}\right), \ldots, u\left(\mu_{j-1}\right)\right\}$.

This is (essentially) the reduced basis method.

Residuals?

One disadvantage of SVD-based low rank approximations is that we need all columns of \boldsymbol{A}.
("One disadvantage of Kolmogorov n-width low rank approximations is that we need all functions in \mathcal{A}.")

Residuals?

One disadvantage of SVD-based low rank approximations is that we need all columns of \boldsymbol{A}.
("One disadvantage of Kolmogorov n-width low rank approximations is that we need all functions in \mathcal{A}.")

A " $Q R$ " approach still requires the residual

$$
\mu_{j}=\underset{\mu \in \Gamma}{\arg \max }\left\|u(\mu)-\mathcal{P}_{j-1} u(\mu)\right\|,
$$

which, naively, still requires $u(\mu)$.

Residuals?

One disadvantage of SVD-based low rank approximations is that we need all columns of \boldsymbol{A}.
("One disadvantage of Kolmogorov n-width low rank approximations is that we need all functions in \mathcal{A}.')

A " $Q R$ " approach still requires the residual

$$
\mu_{j}=\underset{\mu \in \Gamma}{\arg \max }\left\|u(\mu)-\mathcal{P}_{j-1} u(\mu)\right\|,
$$

which, naively, still requires $u(\mu)$.
RBM methods get around this in the same way that one can get around knowing exact solutions to linear systems:

$$
\boldsymbol{L}_{j} \boldsymbol{a}_{j}=\boldsymbol{b}_{j} \Longrightarrow\left\|\boldsymbol{a}_{j}-\boldsymbol{z}\right\| \leqslant \frac{1}{\sigma_{\min }\left(\boldsymbol{L}_{j}\right)}\left\|\boldsymbol{b}_{j}-\boldsymbol{L}_{j} \boldsymbol{z}\right\|_{2}
$$

RBM and $Q R$ decompositions

RBM algorithms perform snapshot-based model reduction via a $Q R$ decomposition.

$$
\begin{align*}
\mathcal{L}(u(\mu) ; \mu) & =b(\mu) \\
& \Downarrow \\
\left\|u(\mu)-\mathcal{P}_{j-1} u(\mu)\right\| & \leqslant \frac{1}{" \sigma_{\min }(\mathcal{L}) "}\left\|b(\mu)-\mathcal{L}\left(\mathcal{P}_{j-1} u(\mu) ; \mu\right)\right\|_{2} \tag{1}
\end{align*}
$$

RBM and $Q R$ decompositions

RBM algorithms perform snapshot-based model reduction via a $Q R$ decomposition.

$$
\begin{align*}
\mathcal{L}(u(\mu) ; \mu) & =b(\mu) \\
& \Downarrow \\
\left\|u(\mu)-\mathcal{P}_{j-1} u(\mu)\right\| & \leqslant \frac{1}{" \sigma_{\min }(\mathcal{L}) "}\left\|b(\mu)-\mathcal{L}\left(\mathcal{P}_{j-1} u(\mu) ; \mu\right)\right\|_{2} \tag{1}
\end{align*}
$$

This residual:

- can be computed without computing u if $\mathcal{L}(\cdot ; \mu)$ depends on μ in an affine way,
- provides a rigorous bound on error committed if " $\sigma_{\min }(\mathcal{L})$ " can be computed (a posteriori error estimates)
Even though (1) is only an inequality, this "weak" greedy algorithm still produces a good approximation, assuming the n width decays quickly.
[Binev, Cohen, Dahmen, Devore, Petrova, Wojtaszczyk 2011], [Devore, Petrova,
Wojtaszczyk 2013]

Empirical interpolation methods (essentially) perform $L U$ decompositions

Affine dependence

Many times, \mathcal{L} does not depend on μ in an affine way. In particular, \mathcal{L} may contain functions of μ, e.g.,

$$
\mathcal{L}(u ; \mu)=-\nabla_{x} \cdot\left(\ell(x ; \mu) \nabla_{x}\right) u .
$$

This is affine only if

$$
\ell(x ; \mu)=\sum_{i=1}^{d} f_{i}(\mu) \ell_{i}(x) .
$$

Affine dependence

Many times, \mathcal{L} does not depend on μ in an affine way.
In particular, \mathcal{L} may contain functions of μ, e.g.,

$$
\mathcal{L}(u ; \mu)=-\nabla_{x} \cdot\left(\ell(x ; \mu) \nabla_{x}\right) u
$$

This is affine only if

$$
\ell(x ; \mu)=\sum_{i=1}^{d} f_{i}(\mu) \ell_{i}(x)
$$

An affine approximation for \mathcal{L} (i.e., for ℓ) is often accomplished via empirical interpolation.[Barrault, Maday, Nguyen, Patera 2004]

Empirical interpolation

Once again, let's understand this in the discrete setting:

$$
\boldsymbol{L}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{\ell}_{1} & \boldsymbol{\ell}_{2} & \cdots & \boldsymbol{\ell}_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

One consequence of continuous problem practicalities: want to avoid computing column norms.

Empirical interpolation

Once again, let's understand this in the discrete setting:

$$
\boldsymbol{L}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{\ell}_{1} & \boldsymbol{\ell}_{2} & \cdots & \boldsymbol{\ell}_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

One consequence of continuous problem practicalities: want to avoid computing column norms.

One strategy is an "incomplete" $L U$ factorization. A (complete-pivoting) factorization is

$$
P L Q=Z U
$$

where \boldsymbol{Z} is lower triangular, and \boldsymbol{P} and \boldsymbol{Q} are permutation matrices.

Empirical interpolation

Once again, let's understand this in the discrete setting:

$$
\boldsymbol{L}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{\ell}_{1} & \boldsymbol{\ell}_{2} & \cdots & \boldsymbol{\ell}_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

One consequence of continuous problem practicalities: want to avoid computing column norms.

One strategy is an "incomplete" $L U$ factorization. A (complete-pivoting) factorization is

$$
P L Q=Z U
$$

where \boldsymbol{Z} is lower triangular, and \boldsymbol{P} and \boldsymbol{Q} are permutation matrices. An approximation would be an incomplete factorization:

$$
\boldsymbol{P} \boldsymbol{L} \boldsymbol{Q} \approx \boldsymbol{Z}_{d} \boldsymbol{U}_{d}
$$

where $\boldsymbol{Z}_{d}\left(\boldsymbol{U}_{d}\right)$ is a principal d-column (-row) truncation.

Empirical interpolation

Once again, let's understand this in the discrete setting:

$$
\boldsymbol{L}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{\ell}_{1} & \boldsymbol{\ell}_{2} & \cdots & \boldsymbol{\ell}_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

One consequence of continuous problem practicalities: want to avoid computing column norms.

One strategy is an "incomplete" $L U$ factorization. A (complete-pivoting) factorization is

$$
P L Q=Z U
$$

where \boldsymbol{Z} is lower triangular, and \boldsymbol{P} and \boldsymbol{Q} are permutation matrices. An approximation would be an incomplete factorization:

$$
\boldsymbol{P} \boldsymbol{L} \boldsymbol{Q} \approx \boldsymbol{Z}_{d} \boldsymbol{U}_{d}
$$

where $\boldsymbol{Z}_{d}\left(\boldsymbol{U}_{d}\right)$ is a principal d-column (-row) truncation. In the continuous setting, this is called the empirical interpolation method (EIM).
\boldsymbol{P} : Spatial points for interpolation
\boldsymbol{Q} : Parameter values defining snapshots used for spatial interpolation

Continuous \leftrightarrow discrete analogies

Kolmogorov n widths \leftrightarrow Singular value decompositions

Reduced basis methods $\leftrightarrow Q R$ decompositions

Empirical interpolation methods $\leftrightarrow L U$ decompositions

Continuous \leftrightarrow discrete analogies

Kolmogorov n widths \leftrightarrow Singular value decompositions

Reduced basis methods $\leftrightarrow Q R$ decompositions

Empirical interpolation methods $\leftrightarrow L U$ decompositions

Bonus! Why do Kolmogorov n widths decay quickly? (for "nice" problems)

Polynomial approximations

Recall some complex analysis:
Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function in some open disc D of the complex plane.

Let Γ be a subset of D, with $\bar{\Gamma} \subset D$, and $d(\Gamma, \partial D) \geqslant r$.

Polynomial approximations

Recall some complex analysis:
Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function in some open disc D of the complex plane.

Let Γ be a subset of D, with $\bar{\Gamma} \subset D$, and $d(\Gamma, \partial D) \geqslant r$.
Then Taylor's theorem implies that if p is the degree- n Taylor polynomial centered around any $z_{0} \in \Gamma$ then

$$
\sup _{z \in \Gamma}\|f(z)-p(z)\| \lesssim r^{-n}
$$

Polynomial approximations

Recall some complex analysis:
Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function in some open disc D of the complex plane.

Let Γ be a subset of D, with $\bar{\Gamma} \subset D$, and $d(\Gamma, \partial D) \geqslant r$.
Then Taylor's theorem implies that if p is the degree- n Taylor polynomial centered around any $z_{0} \in \Gamma$ then

$$
\sup _{z \in \Gamma}\|f(z)-p(z)\| \lesssim r^{-n}
$$

I.e., polynomial approximations are exponentially accurate for smooth functions.

Parameterized elliptic PDEs (1/2)

Now consider the elliptic PDE

$$
-\nabla_{x}\left(\ell(x ; \mu) \nabla_{x}\right)=b(x ; \mu)
$$

Suppose $\ell(x ; \mu)$ is continuous, is μ-uniformly bounded, depends on μ in an affine way, and

$$
\inf _{x} \ell(x, ; \mu)>r_{\min }>0
$$

uniformly for $\mu \in \Gamma \subset \mathbb{R}^{d}$. Let $0 \in \Gamma$.
Then the solution $\mu \mapsto u(\mu)$ exists and is well-defined in some Hilbert space H.

Parameterized elliptic PDEs (1/2)

Now consider the elliptic PDE

$$
-\nabla_{x}\left(\ell(x ; \mu) \nabla_{x}\right)=b(x ; \mu)
$$

Suppose $\ell(x ; \mu)$ is continuous, is μ-uniformly bounded, depends on μ in an affine way, and

$$
\inf _{x} \ell(x, ; \mu)>r_{\min }>0
$$

uniformly for $\mu \in \Gamma \subset \mathbb{R}^{d}$. Let $0 \in \Gamma$.
Then the solution $\mu \mapsto u(\mu)$ exists and is well-defined in some Hilbert space H. Under these conditions, then

$$
\mu \mapsto u(\cdot, \mu)
$$

is (complex) differentiable in an open disc D, with $\operatorname{dist}(\Gamma, \partial D) \sim r_{\text {min }}$.
In particular, all μ-derivatives of u at $\mu=0$ exist and are H-valued.

Parameterized elliptic PDEs (2/2)

Since $\mu \mapsto u(\mu)$ is complex differentiable in Γ with radius $\mathrm{r}_{\text {min }}$:

Taylor's Theorem guarantees a degree- n, d-variate polynomial approximation p_{n} with $N \lesssim n^{d}$ degrees of freedom such that

$$
\sup _{\mu \in O}\left\|u(\mu)-p_{n}(z)\right\| \lesssim r_{\min }^{-n} \sim r_{\min }^{-N^{(1 / d)}}
$$

Hence, the Kolmogorov width of the manifold of solutions (in H) decays in N, but suffers the curse of dimensionality.[Cohen, Devore 2015]

Parameterized elliptic PDEs (2/2)

Since $\mu \mapsto u(\mu)$ is complex differentiable in Γ with radius $\mathrm{r}_{\text {min }}$:

Taylor's Theorem guarantees a degree- n, d-variate polynomial approximation p_{n} with $N \lesssim n^{d}$ degrees of freedom such that

$$
\sup _{\mu \in O}\left\|u(\mu)-p_{n}(z)\right\| \lesssim r_{\min }^{-n} \sim r_{\min }^{-N^{(1 / d)}}
$$

Hence, the Kolmogorov width of the manifold of solutions (in H) decays in N, but suffers the curse of dimensionality.[Cohen, Devore 2015]

In short, Kolmogorov widths decay quickly when u depends smoothly on the parameter, but suffer from (classical) approximation limitations.

[^0]: A. Narayan (U. Utah - SCI)

